Analyzing Incomplete Discrete Longitudinal Clinical Trial Data

نویسندگان

  • Ivy Jansen
  • Caroline Beunckens
  • Geert Molenberghs
  • Geert Verbeke
  • Craig Mallinckrodt
چکیده

Commonly used methods to analyze incomplete longitudinal clinical trial data include complete case analysis (CC) and last observation carried forward (LOCF). However, such methods rest on strong assumptions, including missing completely at random (MCAR) for CC and unchanging profile after dropout for LOCF. Such assumptions are too strong to generally hold. Over the last decades, a number of full longitudinal data analysis methods have become available, such as the linear mixed model for Gaussian outcomes, that are valid under the much weaker missing at random (MAR) assumption. Such a method is useful, even if the scientific question is in terms of a single time point, for example, the last planned measurement occasion, and it is generally consistent with the intention-to-treat principle. The validity of such a method rests on the use of maximum likelihood, under which the missing data mechanism is ignorable as soon as it is MAR. In this paper, we will focus on non-Gaussian outcomes, such as binary, categorical or count data. This setting is less straightforward since there is no unambiguous counterpart to the linear mixed model. We first provide an overview of the various modeling frameworks for non-Gaussian longitudinal data, and subsequently focus on generalized linear mixed-effects models, on the one hand, of which the parameters can be estimated using full likelihood, and on generalized estimating equations, on the other hand, which is a nonlikelihood method and hence requires a modification to be valid under MAR. We briefly comment on the position of models that assume missingness not at random and argue they are most useful to perform sensitivity analysis. Our developments are Ivy Jansen is Postdoctoral Researcher, Center for Statistics, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium (e-mail: ivy.jansen@ uhasselt.be). Caroline Beunckens is Research Assistant, Center for Statistics, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium (e-mail: [email protected]). Geert Molenberghs is Professor, Center for Statistics, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium (e-mail: [email protected]). Geert Verbeke is Professor, Biostatistical Centre, Katholieke Universiteit Leuven, Kapucijnenvoer 35, B-3000 Leuven, Belgium (e-mail: geert.verbeke@med. kuleuven.be). Craig Mallinckrodt is Senior Research Fellow, Eli Lilly & Company, Indianapolis, Indiana 46285, USA (e-mail: [email protected]).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses

The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...

متن کامل

Analyzing incomplete longitudinal clinical trial data.

Using standard missing data taxonomy, due to Rubin and co-workers, and simple algebraic derivations, it is argued that some simple but commonly used methods to handle incomplete longitudinal clinical trial data, such as complete case analyses and methods based on last observation carried forward, require restrictive assumptions and stand on a weaker theoretical foundation than likelihood-based ...

متن کامل

Estimating the effect of multiple imputation on incomplete longitudinal data with application to a randomized clinical study.

For analyzing incomplete longitudinal data, there has been recent interest in comparing estimates with and without the use of multiple imputation along with mixed effects model and generalized estimating equations. Empirically, the additional use of multiple imputation generally led to overestimated variances and may yield more heavily biased estimates than the use of last observation carried f...

متن کامل

An Analysis of Selection Models for Incomplete Longitudinal ClinicalTrials Due to Dropout: An Application to Multi-Centre Trial Data

A common problem encountered in statistical analysis is that of missing data, which occurs when some variables have missing values in some units. The present paper deals with the analysis of longitudinal continuous measurements with incomplete data due to non-ignorable dropout. In repeated measurements data, as one solution to a such problem, the selection model assumes a mechanism of outcome-d...

متن کامل

Analysis of Dynamic Longitudinal Categorical Data in Incomplete Contingency Tables Using Capture-Recapture Sampling: A case Study of Semi-Concentrated Doctoral Exam

Abstract. In this paper, dynamic longitudinal categorical data and estimation of their parameters in incomplete contingency tables are evaluated. To apply the proposed method, a study has been conducted on the data of the semi-concentrated doctoral exam of the National Organization for Educational Testing (NOET). The results of studies such as the obtained confidence intervals and calculating t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006